BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?

Code-Mixing + BERTology = BERTologiCoMix

Code Mixing and Code-Switching

Life ko face kiijiye with himmat and faith in yourself "Face life with courage and faith in self" She lives en una casa blanca "She lives in a white house"

BERTology

Series of studies probing BERT and its representations (Rogers et. al., 2020)

Questions we ask:

- What type of CM is ideal for mBERT finetuning?
- . What changes happen to mBERT while finetuning?

 \mathbf{O}

(r - CM) – real Code-Mixing (naturally occurring)

Sebastin Santy, Anirudh Srinivasan, Monojit Choudhury Microsoft Research, India

Downstream Task Experiments

 $m\langle \rangle$ - stock mBERT i.e., without finetuning

 $m(l,\odot)$ - mBERT finetuned on (l - CM) $m(g, \odot)$ - mBERT finetuned on (g - CM) $m(r,\odot)$ - mBERT finetuned on (r - CM)

GLUECoS Benchmark (Khanuja et al., 2020) consists of varied code-mixing tasks Sentiment, NER, POS, Language ID, QA, NLI English-Spanish (*enes*) and English-Hindi (*enhi*)

	SENT		NER		POS			LID		QA	NLI
model	enes	enhi	enes	ehi	enes	enhi	enhi	enes	enhi	enhi	enhi
$m_{\langle angle}$	$67.81_{\pm 2.5}$	58.42 $_{\pm 1.1}$	$59.50_{\pm 0.9}$	$75.55_{\pm 0.6}$	$93.35_{\pm 0.2}$	$87.49_{\pm0.1}$	$63.40_{\pm 0.5}$	$95.99_{\pm 0.0}$	$\textbf{95.80}_{\pm 0.4}$	$71.95_{\pm 0.8}$	63.25 ±1.9
$m_{\langle l,\odot angle}$	$68.07_{\pm1.5}$	$58.08_{\pm0.8}$	$59.39_{\pm 1.0}$	$76.53_{\pm1.0}$	$\textbf{93.84}_{\pm 0.1}$	$88.00{\scriptstyle \pm 0.2}$	$\textbf{64.09}_{\pm 0.2}$	$96.09_{\pm0.1}$	$95.32_{\pm 0.9}$	$70.53_{\pm 3.5}$	$62.94_{\pm 2.7}$
$m_{\langle g,\odot angle}$	$68.64_{\pm1.5}$	$57.90{\scriptstyle\pm1.1}$	$59.88_{\pm 0.7}$	$76.86_{\pm0.6}$	$93.74_{\pm0.1}$	$87.79_{\pm 0.2}$	$63.79_{\pm 0.2}$	$96.06_{\pm 0.0}$	$95.41{\scriptstyle \pm 0.8}$	$70.11{\scriptstyle \pm 1.8}$	$55.19_{\pm 6.5}$
$m_{\langle r,\odot angle}$	$\textbf{68.51}_{\pm 0.7}$	$58.25_{\pm0.8}$	$\textbf{60.46}_{\pm 0.6}$	$\textbf{76.86}_{\pm 0.5}$	$93.68_{\pm0.1}$	$\textbf{88.00}_{\pm 0.0}$	$63.38_{\pm0.0}$	$\textbf{96.12}_{\pm 0.0}$	$94.60_{\pm 0.2}$	73.54 $_{\pm 3.9}$	$60.00_{\pm 5.7}$

Probing for layer-wise performance on different downstream tasks (Tenney et al., 2019)

Differential Visualization

Pratapa, et al. "Language modeling for code-mixing: The role of linguistic theory based synthetic data". ACL (2018)

Responsivity to Code-Mixing

Build a classifier to distinguish between Monolingual and Code-Mixed sentences using BERT attention head representations by measuring responsivity (R_{xy}) (analogous to calculating information gain of features)

 $\mathcal{R}_{x,y} = H(x) - H(x|y)$

More heads respond to CM after finetuning with (r - r)CM) data as compared to either (q - CM) and (l - CM)

References

- Khanuja, et al. "GLUECoS: An Evaluation Benchmark for Code-Switched NLP." ACL (2020).
- Tenney, et al. "BERT rediscovers the classical NLP pipeline." ACL (2019)
- Rogers, et al. "A Primer in BERTology: What we know about how BERT works". TACL (2020)