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Abstract—Network measurements are essential for
troubleshooting and active management of networks.
Protocol analysis of captured network packet traffic is
an important passive network measurement technique
used by researchers and network operations engineers.
In this work, we present a measurement workbench tool
named BITS Darshini (Darshini in short) to enable
scientific network measurements.
We have created Darshini as a modular, concurrent

web application that stores experimental meta-data
and allows users to specify protocol parse graphs.
Darshini performs protocol analysis on a pipeline archi-
tecture, persists the analysis to a database and provides
the analysis results via a REST API service. We also
formulate the problem of mapping protocol parse graph
to a pipeline as a graph embedding problem. Our tool,
Darshini, performs protocol analysis up to transport
layer and is suitable for the study of small and medium-
sized networks. Darshini enables collaboration and con-
sultations with experts.

Index Terms—Network measurements, measurement
workbench, packet analyzer, collaborative analysis,
concurrent packet analysis, protocol parse graph, graph
embedding

I. Introduction
Network packet capture and protocol analysis is an

integral part of modern network management [1], [2]. A
major concern in network measurements community is the
lack of emphasis on the application of scientific (repeat-
able, verifiable and falsifiable) measurement principles [3].
Researchers and operations engineers often wish to control
/ restrict the packet analysis to scenarios of interest as
implied by the experimental objectives [4]. Thus user-
directed protocol analysis is an important requirement
on packet capture and analysis tools. The network mea-
surement community needs collaboration and user-directed
protocol analysis features together in one measurement
tool. An ideal measurement tool would also enable sci-
entific measurements.

Centralized data repositories such as Crawdad [5]
and DataCat [6] maintain useful network measurement
datasets created using scientific measurement principles.
In most of the network traffic data sets placed in public
domain, the process of creating and documenting exper-
imental design is adhoc. Having a packet capture tool
that facilitates experimental design, documentation and
collaboration would be useful in creating templates for
measurement data exchange. In addition, the longitudinal
evolution of network traffic mix [7], [8] requires user-
directed protocol analysis. None of the existing tools
include all three features – scientific measurements, col-
laboration and user-defined protocol analysis.

Popular protocol analysis tools like Wireshark [9] are
developed for the scenario of lone engineer analyzing the
captured packet stream on a local machine. Hence the
concept of collaborative analysis is not a standard feature
in these tools. Persistence is not a standard feature of these
tools; thus collaborative analysis becomes repetitive. The
experts / reviewers are asked to look at a pcap file without
the associated experimental meta-data. Another limitation
is the fixed configuration in measurement tools denying
users the ability to select protocols of their interest for
further analysis.

We overcome the above mentioned limitations in BITS
Darshini. Our major contributions are:
1) Support measurement strategies and experimental

workbench functionality to foster sound network mea-
surements.

2) Support for collaboration between measurement engi-
neers by enabling sharing of experimental workbench
consisting of experimental setup and analysis results.

3) Allow experimenters to create user-defined protocol
parse graph and perform protocol analysis as per this
parse graph.

4) Create a flexible concurrent pipeline from one generic



TABLE I
A comparison of Darshini with other packet processing tools.

Parameter BITS Darshini tshark Wireshark ntop BroIDS

Maintenance of measure-
ment meta-data

3 7 7 7 7

Collaboration share analysis, pcaps hidden ←−− share pcaps −−→ share analysis share logs

Persistence Elastic Search (ES) DB 7 7 disk in HTML/RRDa

format
logs

Protocol selectivity for
analysis

user-defined parse graph 7 7 7 BroScript

Concurrency multi-threaded, multi-core 7 7 distributed capture 7

Addition of new protocols P4 protocol headers ←−−−−−−−−−− WSGDb/ Lua / C −−−−−−−−−−→ C++ and BroScript

Packet filters BPFc for capture filters;
ES REST API for display
filters

←−−−−−−−−−−−−−−− BPF −−−−−−−−−−−−−−−→ BroScripts

a RRD - Round Robin Database, bWSGD - WireShark Generic Dissector, cBPF - Berkeley Packet Filter,

analyzer cell (GAC). The created pipeline proto-
col analyzer performs protocol analysis as per user-
defined parse graph.

5) Support for persistence of analysis results in database
with REST API access to data.

The protocol analyzer pipeline of Darshini is able to per-
form protocol analysis with a maximum throughput of 606
Mbps. This throughput is sufficient for most offline packet
analysis scenarios. In-memory protocol analysis tools have
difficulty with analyzing large pcap files; for example,
Wireshark has difficulty analyzing pcap files larger than
100MB [10]. Darshini does not have any limitations on
the input pcap size; the packet analysis rate of Darshini is
independent of the input pcap file size. A comparison of
Darshini with other packet processing tools is available in
Table I.

II. Related Work
Darshini requires specification of the following elements:

protocol headers, protocol parse graph, protocol analysis
pipeline and persistence module. This section describes
previous work on each of the above mentioned sub-areas.

A. Parse Graph
A protocol parse graph can be implemented in hard-

ware, software or a mix of both hardware and software.
One popular form of hardware implementation is the
synthesis of the parse graph state machine onto ASICs
with TCAM [11], and onto the commercially available
FPGA architectures [12]. A survey of the hardware im-
plementations of the protocol parse graph techniques is
available in [13]. Examples of software implementation for
the parse graphs are: Wireshark [9] and tcpdump [14].

Software / hardware implementations of the protocol
parse graphs can either be a fixed or a programmable kind.
A fixed parse graph can only parse the protocol sequences
that are part of the given parse graph. On the other hand,
a programmable parse graph can dynamically select a
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Fig. 1. Protocol parse graph.

parse graph at the run time. In Darshini, we implement a
programmable parse graph.

The idea of protocol parse graph is a very old [15], [16].
A variation of protocol parse graph called Berkeley Packet
Filter (BPF) is used in the tcpdump [14] and Linux socket
filter [17]. In these instances, the parse graph is typically
used to select packets of interest.

Our purpose is to parse the incoming packets in order to
analyze the protocol stack of the packet. P4 language [18]
presents a parse graph notation that is suitable for both
hardware and software implementations. Hence we use P4
language to express the protocol parse graph.

B. Packet Parsers
There have been attempts to implement a pipeline

protocol parse graph to enhance the protocol analysis
throughput. The architectural solutions proposed by [11],
[12], [19] and [20] are some of the pure hardware imple-
mentations of the packet parsers.

We adopt the Generic Protocol Parser Interface (GPPI)
of Benáček et al. [19], [21] for our design of generic analyzer
cell (GAC). The high frequency extractor (HFE) M2 and
the GPPI discussed by Benáček et al. [19], [21] together
form a serially connected pipeline implemented in hard-
ware. Wireshark [9] implements parse graph in software
without pipelines. Our analyzer pipeline is a complete
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Fig. 2. System architecture of Darshini.

software implementation with support for concurrency. In
addition, we introduce a logical bus connectivity to this
pipeline by using feedforward / feedback line between all
stages of the pipeline. We support multiple protocols per
pipeline stage; The end result is an architecture that is
flexible enough to support load balancing across pipeline
stages.

C. System Architecture
Packet capture and protocol analysis software tcpdump,

tshark and Wireshark have been developed as stand alone
packet processing utilities. Ntop [1], [22] is a web appli-
cation with dynamic plug-in system for customization of
analysis and view. Darshini has also been designed as a
web application with support for adding new protocols.
One major difference between Ntop and Darshini is the
user-defined protocol analysis. Darshini allows users to
specify parse graph for protocol analysis while Ntop per-
forms basic protocol analysis for all supported protocols.

III. Architecture
A. Preliminaries

We use P4 language [18] for specifying the header format
of protocols and for specifying the protocol parse graph.
An example protocol parse graph is given in Figure 1.

Darshini uses two different parse graphs. One is the
parse graph of all supported protocols; prior literature
refers to this graph as union parse graph [11]. The second
parse graph is the user-specified parse graph indicating the
protocols of interest to the user. For all practical purposes,
user-specified parse graph is a sub-graph of the union parse
graph.

B. System Overview
An outline of the system architecture is shown in Figure

2. Darshini takes in a stream of packets to operate on.
The protocol parse graph, protocol header specification
and beautification files are also given as input to Darshini.
The protocol headers and parse graph are expressed in P4
language.

The major building blocks of Darshini are: analyzer
pipeline, P4 compiler, database (DB) and MVC compo-
nents. Analyzer pipeline receives custom analyzers created
by P4 compiler. Analyzer pipeline uses user-defined parse
graph and custom analyzers to parse the packet stream.

Analyzer pipeline internally follows pipes-and-filters archi-
tectural pattern.

Model module is a part of MVC architecture that stores
all the data of analyzers; model interacts with controller
and DB. Controller module is also a part of MVC ar-
chitecture and glues the model with views. Controller is
responsible for handling all requests from view module and
making method calls to models module. Controller returns
data to view module which presents formatted data to
user.

View module can directly interact with database over
REST API. View module facilitates collaboration between
users.

C. Analyzer Pipeline
Analyzer pipeline forms the backbone of Darshini. Ana-

lyzer pipeline is responsible for taking in a filtered stream
of packets and analyzing these packets as indicated by the
user-specified parse graph. Analyzer pipeline stores the
analysis results in DB via the persistence module. The
analyzer pipeline architecture is shown in Figure 3a.

Each pipeline stage receives a packet, completes analysis
for the protocols the stage is responsible for. It then
forwards the packet to next stage. A packet is sent to next
stage using the feedforward / feedback line. In order to
accommodate tunneling scenarios, a feedback line connects
a stage to itself or to one of the former pipeline stages.
It is possible to encounter packets that do not have PCI
header for a protocol layer (ex: raw packets with only TCP
header would obviously miss the IP header). Feed forward
line enables skipping of a pipeline stage where necessary.

D. Generic Analyzer Cell (GAC)
All the pipeline stages are created from the same tem-

plate named GAC. The block diagram of the GAC is
shown in Figure 3b.

All the incoming packets of a GAC are received by
the generic analyzer. Generic analyzer collects statistical
/ flow information from the packet for record keeping pur-
poses. Generic analyzer pushes the collected information
to the persistence module. After this, the generic analyzer
informs all the registered custom analyzers of the analyzer
cell about the available packet. An appropriate custom
analyzer picks up the packet to extract protocol headers.
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Fig. 3. Protocol analyzer pipeline. Each stage of the pipeline consists of one GAC which is illustrated in part-(b).

As soon as the protocol header extraction is done in a cus-
tom analyzer, next protocol is determined. The processed
packet is then forwarded to next analyzer cell; extracted
protocol headers are forwarded to the persistence module.

Generic and custom analyzers complete their work
quickly; the data path from cell input to custom analyzers
forms fast path of execution. Data path from custom
analyzers to persistence module works at much slower rate
and is called slow path.
Analyzer cells decouple the fast and slow execution

paths. As soon as the output of the faster execution path is
ready, the processed packet is passed to the next pipeline
stage. The slower execution path of a pipeline stage can
have long input and output queues to adjust to the packet
processing throughput disparity between the fast and slow
paths.

E. Parse Graph to Pipeline Mapping: A Graph Embedding
Problem

Analyzer pipeline is the platform on which the parse
graph gets executed. Hence, each node of a parse graph
(each node is really a protocol) needs to be assigned to

one pipeline stage. Because of the feedforward / feedback
line, all stages of the pipeline are interconnected. From
graph theoretic framework, the pipeline shown in Figure
3a forms a complete graph KN where N indicates the
number of stages in the pipeline. Since we wish to assign
vertices of the parse graph to the pipeline stages (vertices
of KN ), the problem is equivalent to graph embedding
problem. More details about the applicability of the graph
embedding problem to Darshini are available in Appendix.

IV. Implementation
A. Realization of Architecture

Darshini has been implemented as a model-view-
controller (MVC) architecture based web application.

Figure 4 shows the modules of Darshini.
Model Consists of all the Java objects representing the

data (persistence package) as well as analyzer, proto-
col and utils packages. All model objects get saved in
Elastic Search.

View Consists of client-side (web-browser) code. We use
backbone.js Model-View framework to implement
client-side functionality for Darshini in the browser.
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Fig. 4. Implementation details of the system architecture for Darshini.



TABLE II
API end points for Darshini. The base URL of host and ES

URLs are not shown.

API URL Service

/ home page
/signup user signup
/signin user login
/session/validate validate parse graph
/session/analyze start protocol analysis

Based on context, view either interacts with server-
side controller or with Elastic Search (ES). The API
URLs accessed by the client-side code are listed in
Table II.

Controller Controller is responsible for authenticating
the users. Controller is also responsible for an on-
demand launch of a session to manage analyzer
pipeline of a packet analysis experiment.

Session Corresponds to one independent protocol analy-
sis. The pipeline protocol analysis itself is performed
using Java Threads. Each analyzer cell of an analyzer
pipeline is run on a dedicated thread. All custom
analyzers persist the protocol analysis results to ES.
Details of session and analyzer pipeline are illustrated
in Figure 4a.

Elastic Search (ES) A plug-and-play module that pro-
vides base for persistence of application data, espe-
cially the packet analysis data.

Persistence Responsible for managing the speed mis-
match between fast analyzer pipeline and the slow
ES. The speed mismatch is managed using a two-stage
queue as illustrated in Figure 4b. Analysis data from
custom analyzers is put into batches and handed over
to Elastic Search.

B. Measurement Workbench
We created a system of measurement workbench where

the Internet measurements can go through the measure-
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Fig. 5. Sequence diagram illustrating collaboration inside BITS
Darshini.

ment cycle (Objective→ Strategies→Measure→ Analyze
→ Refine Objective).

Darshini facilitates the measurement cycle using the
measurement strategies suggested by Vern Paxson [3].
Further details are available in Table III.

C. Collaborative Analysis
Users of Darshini can share owned experiments with

other users. User have access to two categories of exper-
iments: owned and shared. Owned experiments are the
experiments created by self; Shared experiments are the
experiments shared with a user by the other users. A
typical sequence of actions taken for collaboration within
Darshini are illustrated in Figure 5.

D. User-Defined Protocol Analysis
Darshini comes pre-configured with a union parse graph

that acts as a base graph from which experimenter selects
a sub-graph. The user-specified parse graph must be a

TABLE III
Support for measurement strategies in Darshini

Measurement
Strategy

Implementation

Maintain meta-data Experimental description page
Error detection Auto-detection possible with Elastic Search queries
Reproducible analysis Experiment history
Sub-sample large data Sub-sampling in protocol domain using parse graph; time domain sub-sampling

possible via REST API queries

Periodic analysis Available as a service
Data reduction scripts Elastic Search as a service to execute dynamic queries from users
Outlier detection Supported through REST API interface
Comparing multiple
measurements

Supported through REST API interface

Public data sets Share experiment with other users; avoids sharing pcap files



strict sub-graph of the union parse graph available on the
analyzer software. In this work, we show results for a static
mapping from union parse graph to the analyzer pipeline.
User has complete freedom to specify any sub-graph of
union parse graph for each experiment.

V. Experimental Results
A. Data Set

We measure the performance of Darshini by using offline
pcap files. These offline pcap files contain unfiltered net-
work traffic captured on an edge computer connected to
a mid-level enterprise network having approximately 5000
users. Since Darshini is better suited to perform offline
protocol analysis on the traffic of small to medium-scale
networks, mid-level enterprise traffic is a representative
test scenario for Darshini.

In this section, we compare the performance of Darshini
with tshark tool. Darshini is run in two modes – persistent
mode and non-persistent mode. In persistent mode, anal-
ysis results are saved to Elastic Search. In non-persistent
mode, analysis results are not saved. We use non-persistent
mode to demonstrate the performance of the analyzer
pipeline.

B. User-defined Protocol Analysis
We consider two protocol parse graphs, namely P1 and

P2 for demonstrating the user-defined protocol analysis
capability of Darshini. P1 contains protocols eth, ipv4, tcp
and P2 contains just eth. We complete the user-defined
protocol analysis using parse graphs P1 and P2 on
Darshini. The execution time and run-time memory con-
sumption results of these two experiments are shown in
Table IV.

TABLE IV
User-defined protocol analysis on a pcap file with 1,508,352

packets. The size of pcap file is 955MB.

Selected
Protocols

Execution time Memory
(sec) consumption (MB)

Aa Bb Cc Aa Bb Cc

eth, ipv4, tcp 11.3 40.2 394.8 770 128 220
eth 11.3 25.6 115.9 770 128 238

a A - tshark
b B - Darshini in non-persistent mode
c C - Darshini in persistent mode

We draw three conclusions from this experiment. First,
the run time performance of Darshini is inversely propor-
tional to size of parse graph. Darshini would be able to
complete analysis of few selected protocols very quickly.
Thus Darshini becomes suitable for user-defined protocol
analysis. Second, the fast path (from input to custom
analyzers of generic analyzer cell) is order of magnitude
faster than the slow path (from custom analyzers to Elastic
Search). We can extract better run time performance from
Darshini by optimizing the database storage performance.

Third, Darshini uses 128MB for processing a pcap size of
955MB, where as tshark consumes 770MB for processing
the same file. The reported number of 128MB include the
memory allocation to Java Virtual Machine (JVM) and
Tomcat Servlets. Thus Darshini is more memory efficient
when compared with tshark.

C. Memory Management
We control batch sizes of queries sent to Elastic Search.

Batch size is a configurable parameter for Darshini. With a
batch size of 20,000 queries, Darshini processes 1.5 million
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TABLE V
Throughput numbers achievable by Darshini.

frame size PPS* Throughput (Mbps)

Aa Bb Cc Aa Bb Cc

1514 bytes 49,391 51,371 6,638 583 606 78.4
74 bytes 2,30,023 66,157 6,550 189.5 54.5 5.4
* PPS – packets per second
a A - tshark
b B - Darshini in non-persistent mode
c C - Darshini in persistent mode

packets and saves analysis data to Elastic Search in 224
seconds with a maximum memory consumption of 414
MB. With a batch size of 5,000 queries, Darshini processes
the same pcap file in 908 seconds with a maximum memory
consumption of 235 MB. Thus we can use the batch size to
make trade offs between run time vs memory consumption.

D. Throughput
Figure 6 shows the relative performance of persistent

and non-persistent modes of Darshini. Figure 6a shows
the difference between persistent mode and non-persistent
mode.

The range of throughput numbers achievable by
Darshini are shown in Table V. Since the application and
analyzer pipeline performance is packet size invariant, a
meaningful performance metric is the packets processed
per second (PPS) by Darshini which stands at approxi-
mately 66,000 PPS.

VI. Conclusion
BITS Darshini is a modular and concurrent protocol

analysis tool. Darshini facilitates scientific network mea-
surements done in a collaborative manner. Users can share
experiments within Darshini.

Darshini enables users to select protocols of interest
for analysis. The protocols of interest are specified using
protocol parse graph. This user-defined parse graph di-
rects user-defined protocol analysis in Darshini. We map
the parse graph onto an analysis pipeline. Each protocol
analysis request from a user launches a custom analyzer
pipeline as per the parse graph.

Each custom analyzer pipeline is executed in a com-
pletely concurrent mode there by taking advantage of
the multi-core processor architectures. In Appendix, we
provide the mathematical formulation for mapping user-
defined parse graph to analyzer pipeline as a graph em-
bedding problem.

The results of protocol analysis are persisted in a
database (Elastic Search) instance which in turn makes
the results data available over REST API service interface.
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Appendix

Let G1 = (V1, E1) be a weighted and directed graph
used to denote a protocol parse graph. The vertices of
G1 represent protocols and the edges represent a layer
interface / provider-to-user service relationship from a
parent node to a child node. The weight of an edge
represents the number of packets estimated to pass along
the edge. The edge weights allows us to perform load
balancing across pipeline stages. One such parse graph is
shown in Figure 7.
For now, ignore the cross-generational edges, back edges

and errors. Each custom protocol analyzer (vertex of G1)
also has a processing cost associated with it. Now, our
pipeline with a Pub-Sub architecture can be thought of
as complete graph. In general, we can have the following
properties for one stage of a pipeline.
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Fig. 7. Sample parse graph with edge weights

Cvi Cost of processing for a protocol node vi.
Cpj Capacity of a pipeline stage j. We use the

notion of capacity to restrict the number of
vertices of G1 that can reside in a pipeline
stage.

wx Cost of communication between two vertices
that are part of the same pipeline stage.

wy Cost of communication between two vertices
that are part of different pipeline stages.

Thus a pipeline with N stages is equivalent to a com-
plete graph with N vertices (KN ). Let’s represent the
complete graph using G2. Thus

G2 = (V2, E2)
E2 = {wxi , wyj} ∀i, j ∈ N

Implementing a parse graph on a pipeline is equivalent
to graph embedding of G1 in G2. We wish to minimize the
number of stages in a pipeline and the communication cost
of the created pipeline. We also have a constraint on our
ability to assign protocols (nodes in G1) to a pipeline stage
(node in G2). The constraint is placed by the capacity of
the pipeline itself.

The equivalent optimization problem can be formulated
as:

Objectives: min N = |V2|
min

∑
∀i,j

(wxi + wyj )

OR min
∑
i

w(ei)

Constraints: fv : vi → vj ∀vi ∈ V1 and vj ∈ V2
fe : ei → ej ∀ei ∈ E1 and ej ∈ E2∑

Cvi
≤ Cpj

∀fv(vi) = vj and
vi ∈ V1, vj ∈ V2

In simple terms, we wish to map all vertices and edges of
graph G1 to a minimal complete graph G2 with minimum
cumulative edge cost.

This problem has network embedding and bin packing
properties. This problem is similar to virtual network
embedding (VNE) problem. The bin packing problem is
known to be NP-hard. Hence this problem must also be
NP-hard.


