

Interactive Neural Machine Translation

Monojit Choudhury¹ Sandipan Dandapat² Kalika Bali¹ Sebastin Santy¹

¹Microsoft Research, Bangalore, India ²Microsoft R&D, Hyderabad, India {t-sesan, sadandap, monojitc, kalikab}@microsoft.com

Aim

Assist translators by providing translation suggestions on the fly.

Advantages

Faster Turnaround

The gisting and suggestions help the translator breeze through translation tasks with minimal typing.

High Translation Quality

Language is inherently divergent and human translators cannot quickly enumerate all acceptable variants of a translation. On the other hand, machine translation has not yet reached human quality, though it can provide a number of variants. Combine the individual strengths, to produce high quality translations.

Interface Overview

Translation Gisting

Prime the translator with a quick translation to reduce cognitive load. Spotting errors in the gisting is much easier, than trying to mentally structure the translations.

Translation Suggestions

Gist might not be the correct translation. Provide bi-gram suggestions which the translator can choose instead of the full gist.

■ Word Coverage Visualization

Show one-to-one source-target word mapping. This will help in understanding how much translation is completed.

Transliteration

Non-European languages have non-Latin script. Amateur translators usually use English keyboards to type. Provide character-wise transliteration, as each character triggers the engine to give new outputs.

Amateur Translators

Expert translators are scarce. Take help of bilingual speakers who have native proficiency in these languages for translation tasks by providing suggestions and gisting.

Method

Seq2Seq decoder: Conditional probability of generating output token y_t , at time step t, given the full input sequence x and the previously output tokens y_1, \ldots, y_{t-1} is:

$$p(y_t|y_1, \dots, y_{t-1}, \mathbf{x}) = g(y_{t-1}, s_t, c_t)$$
(1)

 $\blacksquare g \rightarrow$ non-linearity function

 \blacksquare $s_t \rightarrow$ hidden state

 \Box $c_t \rightarrow$ context vector: weighted average of all encoder hidden states with weights generated by the attention mechanism

INMT decoder: Condition based on the partial input from the human translator $\{y'_1, ..., y'_{t-1}\}$ instead of default Seq2Seq output $\{y_1, ..., y_{t-1}\}$: $p(y_t|y'_1, \dots, y'_{t-1}, \mathbf{x}) = g(y'_{t-1}, s_t, c_t)$ (2)**Sparsemax Attention** is used to aid one-to-one source-target word mapping for word coverage visualization. **Beam Search** is used to produce multiple suggestions based on the partial input. It selects the most probable full translation for a given input sentence. If and when the translator diverges from this full translation, a new beam search is conducted from the partial input prefix till end of sentence is encountered.

Experiments

BLEU % - Measure the BLEU score of the generated gist after a certain fraction - x% of words of the intended translation has been provided. Table 1 shows the average BLEU score for each language pair at different values of x.

	Data	0%	10%	20%	40%
	Size				
bn-en	1.1M	25.31	27.54	35.68	54.03
hi-en	$1.5\mathrm{M}$	40.64	42.06	47.90	62.18
ml-en	897K	19.76	21.95	29.84	49.88
ta-en	428K	18.71	20.90	27.05	44.55
te-en	104K	11.92	14.57	21.17	41.98

Multi-BLEU Score with x% of partial input

Keystroke Reduction - Algorithmically compare minimum number of keystrokes required when typing interactively versus the same when manually typing. Reduction of around 30% keystrokes is observed for all the above mentioned languages.

System Overview

OpenNMT (PyTorch); JQuery (JS); Django;

Try it out! https://aka.ms/inmt