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Abstract

Writing effective instructions (or prompts) is rapidly evolving into a dark art,
spawning websites dedicated to collecting, sharing, and even selling instructions.
Yet, the research efforts evaluating large language models (LLMs) either limit
instructions to a predefined set or worse, make anecdotal claims without rigorously
testing sufficient instructions. In reaction to this cottage industry of instruction
design, we introduce LEETPROMPT: a platform where people can interactively
explore the space of instructions to solve problems. LEETPROMPT automatically
evaluates human-LLM interactions to provide insights about both LLMs as well as
human-interaction behavior. With LEETPROMPT, we conduct a within-subjects
user study (N = 20) across 10 problems from 5 domains: biology, physics, math,
programming, and general knowledge. By analyzing 1178 instructions used to
invoke GPT-4, we present the following findings: First, we find that participants
are able to design instructions for all tasks, including those that problem setters
deemed unlikely to be solved. Second, all automatic mechanisms fail to generate
instructions to solve all tasks. Third, the lexical diversity of instructions is signifi-
cantly correlated with whether people were able to solve the problem, highlighting
the need for diverse instructions when evaluating LLMs. Fourth, many instruction
strategies are unsuccessful, highlighting the misalignment between participant’s
conceptual model of the LLM and its functionality. Fifth, participants with prompt-
ing and math experience spend significantly more time on LEETPROMPT. Sixth, we
find that people use more diverse instruction strategies than these automatic base-
lines. Finally, LEETPROMPT facilitates a learning effect: participants self-reported
improvement as they solved each subsequent problem.

1 Introduction

We are witnessing a Cambrian explosion of research in large language models (LLMs). LLMs have
progressed from simply “understanding language” to assisting with problems in biology, solving math
problems, answering general knowledge questions, and even writing code [5, 11, 43]. Given these
newfound abilities, tracking how well these models work for different tasks is becoming increasingly
difficult. In response, large benchmarking attempts, including GLUE [61], SuperGLUE [60], Big-
Bench [20], and HELM [31], have been proposed. However, we argue that they remain limited since
they evaluate models using a fixed set of LLM “instructions”, or what we often colloquially refer to
as “prompts” [31]. This limitation is highlighted by recent manuscripts that break away from such
benchmarks and resort to showcasing LLM capabilities (e.g. specifically GPT-4’s) using anecdotal
interactions between researchers exploring the space of instructions [6, 42].

While the need to study how people invoke LLMs has always been at the center of today’s discourse,
in the context of human-AI alignment [12, 16], there is a dearth of non-anecdotal evaluations of LLMs
with real human interactions. Such studies are particularly vital since the difficulty of finding effective
instructions has led to websites and forums dedicated to collecting and sharing instructions (e.g.
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Figure 1: LEETPROMPT is a platform where users can explore the space of instructions to solve tasks
with LLMs. A. Problem description: This panel contains a description of the problem that needs to be
solved. It often contains examples of plausible inputs and outputs. B. Interaction interface: Here, users
will write instructions, change model hyper-parameters, and evaluate their instructions against public
as well as private test cases. C. Writing instructions: Here lies the text interface where users write their
instructions. The token [[ INPUT ]] identifies where test cases will insert inputs. Most problems
already contain a starter instructions to help users get started. D. Model hyper-parameters: This
panel shows which model is being used and the corresponding modifiable model hyper-parameters.
E. Test and submit: Users can test their instructions against a custom input by clicking Test or
submit their instructions to be evaluated against the blind test cases by clicking on Submit. F.
Problem details and submissions: Users can check overall problem statistics, load past submissions,
and compare their performance against other users.

PromptHero, Arthub.ai, Reddit/StableDiffusion). There are also online marketplaces for purchasing
and selling useful instructions (e.g. PromptBase).

To enable a rigorous evaluation with real human interactions, we present LEETPROMPT. LEET-
PROMPT is an online platform populated with problems that users can attempt to solve by invoking
LLMs with custom instructions; it inherits its name from LeetCode, where users can attempt to solve
similar problems by writing custom code (Figure 1). LEETPROMPT is a dual objective platform
similar to re-CAPTCHA [59] and other collective human protocols [24]: On one hand, users use
LEETPROMPT to solve problems with LLMs; meanwhile, LEETPROMPT automatically gathers
evaluation metrics and user-behavior insights for researchers. On LEETPROMPT, users also have the
ability to add new problems, allowing the platform to organically grow. By granting people agency,
our platform leverages collective human intelligence [33] to study which problems are unsolvable by
language models and simultaneously provides user statistics on their interaction behavior.

To showcase the utility of LEETPROMPT, we run a within-subjects evaluation where we invite
participants to solve problems spanning 5 domains: Biology, Physics, Math, Programming, and
General Knowledge. We chose these domains as representative of current LLM evaluations [22, 40,
48, 53, 49, 36, 54, 8, 32]. We invited a set of 4 initial users with prior experience evaluating and
interacting with LLMs to write problems for LEETPROMPT. They were also asked with problem
setting: generating a set of problems and their corresponding private test cases, where the test cases
serve the same purpose as those used in software development. In total, the problem setters populated
LEETPROMPT with 101 questions. From this set of questions, we sample 10 questions for our user
study, such that there are 2 questions per domain. We recruit 20 participants, with varying education
background, experience with LLMs/programming, and demographics. Each participant attempts to
solve the 10 sampled problems using GPT-4.
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By quantitatively analyzing and qualitatively coding the interactions across 1178 invocations of GPT-
4, we make the following observations: First, we find that participants are able to design instructions
for all tasks, including those that problem setters deemed unlikely to be solved. Sometimes, incorrect
instructions can still result in correct LLM behavior. Second, all automatic mechanisms fail to
generate instructions to solve all tasks, including zero-shot, few-shot, zero-shot CoT [26], few-shot
CoT [64], and auto-CoT [70]. Third, the lexical diversity of instructions is significantly correlated
with people’s ability to solve the problem, highlighting the need for diverse instruction strategies.
Fourth, many instruction strategies are unsuccessful, highlighting the misalignment between the
participant’s conceptual model of the LLM and its functionality. Fifth, participants with experience on
instructing language models, and with math spend significantly more time on LEETPROMPT. Sixth,
we find that people use more diverse instruction strategies than these automatic baselines. Finally,
LEETPROMPT facilitates a learning effect: participants self-report solving subsequent problems faster
and with a better strategy.

2 Related Work

We design LEETPROMPT by drawing on ideas from existing benchmarks, recent anecdotal evaluations,
and collective intelligence literature.

Benchmarks in machine learning. Reaching human performance on influential benchmarks is
often viewed as a key milestone for a field [46]. For instance, AlphaFold’s superior performance
on the CASP 14 competition marks a major scientific advance in the field of structural biology.
Early benchmarks in machine learning include Switchboard [21] and MNIST [28], which have been
followed by ImageNet [47], SQuAD [44], and SNLI [3]. These benchmarks have rallied computer
vision, natural language processing, and other domains of machine learning around a set of common
goals. With the onset of LLMs, larger benchmarks such as GLUE [61, 60], Eval Harness [19],
BigBench [20], MMLU [22], and HELM [31] have helped define progress.

A trend towards anecdotal evaluation. Moving away from benchmarks, anecdotal proof of these
models’ newfound powers is one of the most recent trends. “Sparks of AGI”, for example, shows
numerous examples suggesting that GPT-4 pushes the needle towards artificial general intelligence [6].
Many other papers have followed a similar pattern reporting on manually curated data points exhibit-
ing surprising performance of language models [42] and laying big claims such as language models
possessing a theory of mind [27]. Without sufficient test cases for each claim and without an ex-
haustive exploration of possible input instructions, these claims require further investigation [64, 26].
LEETPROMPT serves as a platform where researchers can design problems, generate sufficient test
cases, and allow a collective of users to explore the space of instructions.

Collective intelligence systems. Leveraging people’s collective intelligence has long since served
the machine learning community. Collective intelligence, in the form of micro-task crowdsourcing,
catalyzed the community’s ability to annotate training [47] and curate evaluation data [72]. Dual
objective platforms, such as re-CAPTCHA [59], simultaneously serve as a spam filter while also
passively collecting annotations for vision and language tasks. Games-with-a-purpose is another class
of systems where players derive casual enjoyment while playing games that contribute useful data
for image labeling [57], image segmentation [58], commonsense reasoning [56], math (Guess the
correlation) and even protein folding (FoldIt). Lab-in-the-Wild projects similarly provide users with
results from a psychology test, exchanging curiosity for their efforts [45]. Citizen science projects
such as Stardust [65] and Zooniverse [51] host projects in a range of fields including astronomy,
ecology, cell biology, humanities, and climate science. We draw inspiration from these methods to
design LEETPROMPT’s dual use of LLMs evaluation while also studying user interaction behavior.

Human-driven evaluation. Recent work advocates for evaluating LLMs with human interac-
tions [29]. While they primarily leverage human interactions to analyze LLM outputs [29], we
propose the opposite: we explore human interactions with LLM input instructions. Today, human-
driven evaluations determine whether text is human- or machine-generated [14] and measure how
well generated images reflect human text inputs [25] 1. Corporations have also started efforts into
outsourcing their “red-teaming” evaluation to people in the wild [17, 39]. Our contribution can also
be seen as a mirror opposite of Dynabench [24], which incentivizes users to provide adversarial

1https://artwhisperer.io/
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data to break model behavior; LEETPROMPT users produce instructions to most effectively solve
problems.

3 LEETPROMPT

Our research introduces LEETPROMPT: an online platform where users are presented with problems
from multiple domains and tasked with writing instructions that an LLM can use to solve the task.
We hope to release LEETPROMPT publicly at a later date to test its utility at scale.

Designing the LEETPROMPT workflow. LEETPROMPT’s core functionality is inspired by online
code judging systems such as LeetCode, TopCoder, and CodeForces. The platform contains a list
of problems that users choose to tackle. Each problem also has a leaderboard indicating how many
users have already attempted to tackle this problem, who achieved the best performance, and with
how many submissions. Once the user chooses a problem, they are given the problem’s description
as well as a few examples of inputs and outputs outlining expected behavior. With this information,
users must write instructions that steer a large language model toward solving the given problem.
Users can also change the model’s hyperparameters.

Once they’ve finished writing the instruction, users can test its utility against their own custom inputs.
Custom inputs allows users to iteratively explore how their changes affect LLM behavior. Once
satisfied, they can submit their final instruction to be evaluated against our hidden test cases. These
private test cases are never revealed to the user; instead, they receive a percentage score indicating
how many of the private test cases passed. To discourage rapid-fire submission and hill-climbing
behavior on the private test cases, the platform provides a time-out after 3 submissions for 5 minutes.
LEETPROMPT also records how many times the user submits instructions, and uses that information
to rearrange the leaderboard to tacitly encourage fewer submissions.

Designing the LEETPROMPT’s interface. LEETPROMPT’s interface is designed to be simple and
promote an intuitive user experience (see Figure 1). We recruit UX designers to join our team and
run studies using mockups of the interface to identify common pitfalls. We face the following design
challenge: creating a platform that is intuitive for users who are not familiar with the process of
writing instructions for LLMs. Drawing on design theory [38], the following principles are used:
(1) Standardizing the interface to match with existing/popular LLM platforms and (2) employing
recognition over recall so users know the full extent of the platform’s affordances through a quick
skim. The appendix contains older versions of the interface.

Evaluating user-generated instructions. Figure 1(C) contains a screenshot of a possible instruction
that a user might write to solve a problem. Users are expected to place an [[ INPUT ]] token
somewhere in their produced instruction. LEETPROMPT evaluates instructions using the following:

accuracy = 100× 1

N

N∑
i=1

1[yi == LLM((Instruction; [[ INPUT ]] = xi))]

where (xi, yi) ∈ [1, . . . , N ] are N private test case (input, output) pairs.
(Instruction; [[ INPUT ]] = xi) replaces the input token in the instruction with test case
input xi. 1[·] is the indicator function. LEETPROMPT contains a set of common regexes to extract the
desired output for the problem from the LLM’s generation.

4 User study

In the following section, we outline our user study design in which we study how people interact
with LLMs to solve problems.

Domain selection. Language models were tested on several different problems. Pre-LLMs, most
language systems focused on tasks such as sentiment analysis [34], part-of-speech tagging [10],
machine translation [52], entailment [35], and speech processing [37]. Since LLMs, models are now
evaluated on simple mathematical and commonsense reasoning [22, 40, 48, 53], causal reasoning [23]
and theory of mind [49, 36], basic sciences [54], programming [8, 32], and even law exams [71, 39].
We choose a subset of these domains as the test bed for our user study: Biology, Physics, Math,
Programming, and General Knowledge.
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Table 1: User performance across the 10 questions in 5 domains. Difficulty of the question was pre-determined
by the problem setters. #Int is the number of model interactions, #Sub is the number of instructions that
were submitted, Passed is the number of passed test cases, and Solved is the percentage of participants who
able to successfully solve the problem. LD, SD, and AD are the Lexical, Semantic, and Approach Diversity,
respectively.

Domain Question Difficulty #Int #Sub Passed Solved LD SD AD

Biology Water Potential Easy 30 18 4.72 ± 0.83 94% 0.56 3e-02 0.61
Biology Food Chain Hard 76 45 3.07 ± 1.47 50% 0.48 6e-03 0.49
Physics Ideal Gas Law Easy 108 31 3.68 ± 1.76 88 % 0.38 7e-02 0.25
Physics Resistance is Futile Medium 84 48 2.88 ± 1.76 50% 0.43 8e-02 0.55
Math Consecutive Integers Easy 67 25 4.36 ± 1.66 75% 0.68 5e-03 0.80
Math Digit Sum Hard 134 45 3.27 ± 0.75 6 % 0.46 5e-03 0.58
Programming Intersperse Medium 99 23 3.70 ± 1.46 63% 0.51 8e-03 0.74
Programming Sort Numbers Medium 64 27 3.56 ± 1.53 56% 0.49 2e-03 0.68
Knowledge Beatles Title Medium 177 28 3.36 ± 1.57 38% 0.47 4e-04 0.44
Knowledge Theory of Mind Medium 36 13 3.15 ± 2.23 44% 0.39 3e-04 0.60

Average → 87.5 30.3 3.58 ± 0.55 56% 0.49 2e-02 0.57

Problem setters. LEETPROMPT grants people agency by empowering them to use our platform to
study new problems they might struggle to solve with LLMs. We invite a small set of 4 initial users
with prior experience interacting with and using LLMs to LEETPROMPT Ẇe ask these users to design
problems: they collectively write a set of 101 problems, each with a set of 5 private test cases. Once
the problems are designed, the problem designers are asked to try and solve each problem and to
assign a subjective difficulty based on their experience. Each problem is categorized into one of three
difficulty levels using majority vote. Easy problems are those that can be solved by utilizing a simple
formula or equation. Medium problems contain difficulty either in the complexity of the formulas
or parsing the inputs and describing the task. They sometimes require domain knowledge or some
background information that can simplify the problem. Hard problems involve complex logic or edge
cases.

From this set, we sample 10 problems such that there are 2 problems for each of the 5 aforementioned
domains. Each participant in our user study sees these 10 problems. Table 1 describes these 10
problems. In total there are 3 easy problems, 5 medium problems and 2 hard problems. The 2 hard
problems were chosen because the problem setters were not able to find an instruction that worked
for all the test cases. Problems are randomly ordered for each user.

Example problem. Figure 1 lays out one of our Biology problems and a user-generated instruction.
It presents the participant with a food chain in the form of X → Y implies that species Y is at a
higher tropic level and, therefore, eats species X . The user is also presented with two species sampled
from that food chain. The problem asks the user to determine whether an increase in the population
of the first species will lead to an increase or decrease in the second. Example 1 in the problem
description presents the following food chain: kelp → sea urchin → otter → orca. The two species
presented are “sea urchin” and “kelp”. Since “sea urchins” eats kelp, an increase in the “sea urchin”
population leads to a decrease in the “kelp” population. This is a hard problem.

The user-generated instruction uses pseudocode to inform the model that if the first species is at a
higher trophic level than the second, the population of the second species will decrease, and vice
versa. Even though this logic works for “sea urchin” and “kelp”, this pseudocode is incorrect when
the two species are “otter” and “kelp”. Since there is a skip connection between “otter” and “kelp”, an
increase in “otters” will result in a decrease in “sea urchins”, which will in turn result in an increase
in “kelp”.

Study protocol. We design a within-subjects study to explore the utility of LEETPROMPT. To
reiterate, the study measures LEETPROMPT’s utility along two simultaneous goals: Investigating 1)
whether the platform supports participants in writing effective instructions to solve problems with
LLMs and 2) providing insights into how people interact with LLMs as they explore the space of
instructions.

The study begins by asking participants to sign a consent form that outlines that their interactions will
be stored and used for this research contribution. Next, they are asked an initial survey to record their
demographics, their background education, and their experience working with LLMs or programming
more broadly. Next, they are shown instructions for using the interface and provided resources that
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 P1 A → Describing CoT 

Let's think step by 
step.We are given the 
initial pressure (P1) as 
3 atm, the initial 
temperature (T1) as 300 
K, and the final…

 P2 A → Describing CoT 

Let's think step by 
step.We have 3 resistors 
in series in parallel 
with 2 resistors in 
series. The total 
resistance…

 P2 A → Using Ideal Gas Law 

To solve this problem, we 
can use the combined gas 
law, which states that 
the product of pressure 
and volume is directly…

 P2 B → Using Ohm’s Law 

Input: For the three 
resistors in series, we 
simply add their 
resistances: R_series = 
R1 + R2 + R3. For the two 
resistors in series…

 P2 C → Writing down Math 

Instructions: Divide the 
input by 100. Give me the 
output answer in the form 
"Output: "

 P2 C → Writing down Math

Find the value of 7500 / 
[[ INPUT ]]. Give your 
answer in the form 
"Output: “. Do not 
explain anything

Ideal Gas Law Resistance is Futile
Physics

 M1 A → Describing CoT 

Let's think step by 
step.Let the smallest 
integer be x. Then the 
other two consecutive 
integers are x+1 and x+2. 
The sum of these…

 M2 A → Describing CoT 

Let's think step by 
step.We need a 3-digit 
number with a digit sum 
of 3. The smallest such 
number would be 102. So 
the answer is…

 M1 B → Using Programming

def smallest_integer 
(sum_of_three):
avg =sum_of_three/3  
smallest=int(average)-1 
return smallest

 M2 B → Using Programming 

def smallest_digit_sum 
(digits, digit_sum):
if digit_sum > 9*digits:

return 0
elif digit_sum == 0 and 
digits == 1:…

 M1 C → Step-wise Reasoning 

Step 1: Subtract 3 from 
the input number
Step 2: Divide the output 
of Step 1 by 3. Return 
"Output:" then this 
number

 M2 C → Re-word Problem

given two input numbers, 
output the smallest 
number with the given 
number of digits and 
given digit sum? If no 
such number exists

Consecutive Integers Digit Sum
Math

 P1 A

 P1 B  P1 C

 P2 A

 P2 B  P2 C

 M1 B

 M1 C

 M1 A

 M2 B

 M2 C  M2 A

Figure 2: Visualizing the space of Auto-CoT and LEETPROMPT Instructions: 2D Principal Component
Analysis (PCA) of embeddings of Auto-CoT and collected instructions from LEETPROMPT. Auto-CoT in-
structions are marked as purple X. LEETPROMPT instructions are marked as dots with colors representing its
solvability: "Test" instructions are colored gray. For "Submitted" instructions, red color indicates that they
failed all testcases, yellow indicates they passed 1-4 testcases, and green indicates that they passed 5 testcases.
Instructions are specifically shown for two problems each from each domains to illustrate the different strategies
used by participants and whether they were successful.

they can reference for advice on good instruction design. After this, the participant is shown a demo
of the interface, which highlights and explains the various panes in the interface. To help familiarize
themselves with the interface, users are provided a sandbox interface with a toy starter problem that
they can test the functionality afforded by the platform. Next, the participants are presented with the
10 sampled problems and asked to attempt solving each one. We set expectations that the study will
likely take about 1 hour. The study ends with a final survey where we collect open-ended responses
describing their experience.

Participant selection. All of our participants are recruited locally from the authors’ city/town. We
only include participants that speak English, spent at least 1 hour working on problems, and submitted
at least one instruction to each of the 10 problems. All participants receive a payment of $15 for their
time with no bonuses. We provide no other incentives other than intrinsic motivation for subsequent
attempts at designing better instructions for each problem. Regardless, we find that each user tried an
average of 5.8 instructions per question.

Measured variables. To evaluate instructions, we use two primary objective performance measures:
solvability and diversity. Solvability measures the percentage of test cases that pass when using a
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specific instruction. Diversity measures how creative people are in writing instructions. Diversity
provides insights into the different approaches that a participant takes to solve each problem. It allows
us to evaluate the claim that diverse instructions and ensembling leads to significant boosts in LLM
performance [67]. Since diversity of instructions can be measured in multiple ways, we measure the
following: (1) Lexical Diversity (LD), Semantic Diversity (SD), and Approach Diversity (AD).

LD uses Repetition Rate (RR) [7, 2] to measure diversity in lexicons between a participant’s instruc-
tion and the original wording used in the problem description. Specifically, LD = 1− RR. LD is 0 if
all lexicons appear more than once and 1 if all lexicon are new.

SD measures the diversity in strategies used by a user when tackling a specific problem. We use
text+code embeddings (text-embedding-ada-002) to encode each instruction and visualize their first
two principle components for qualitative visual analysis. For a quantitative analysis, SD is the
variance for the first principal component.

AD measures the percentage of instruction strategies used, where strategies are qualitatively coded by
3 independent coders (see Table ??) for codes and appendix for full details). The qualitative codes
reflect common instruction strategies in literature: prime the model to behave like a domain expert [1],
use example input/outputs [62], use CoT prompting [64, 26, 63, 66, 55], use self-help [41, 68] and
the lexical structure [15], and use pseudo-code [69].

Automatic instruction mechanisms. We compare user-generated instructions with mechanisms
used in existing benchmarks. Zero-shot (0s) uses the problem description and no other information.
Zero-shot CoT (CoT) includes a phrase which requests the LLM to reason the steps aloud [26].
Few-shot variants (N -shot Ns where N = 1, 2, 3, 4) append N -example input/output pairs. We also
test with advanced auto-prompting methods, such as Auto-CoT [70] which invokes multiple CoT
reasoning steps along with 10 input/output examples, and Synthetic prompting [50] which tunes
existing prompts.

Models used. LEETPROMPT supports any LLM that affords an API access to invoke the model. We
allow participants to use any of the following models: GPT-4, GPT-3.5, and GPT-3. However, all
participants chose to use GPT-4 for all their attempts. In the appendix, we retroactively evaluate their
instructions on the other models as a point of comparison.

5 Results

By analyzing the 1178 user-generated instructions and their feedback from the survey we find
the following: To start, participants are able to generate instructions to solve all the problems,
including the hard questions that the problem setters had deemed unlikely to be solved. Sometimes,
incorrect instructions can still result in correct LLM behavior. Second, automatic mechanisms are
not able to solve all problems. Third, the use of diverse instructions is strongly correlated with
solvability, indicating a need for diversity in instructions in existing benchmarks. Fourth, there is a
misalignment between user expectations of LLMs and the reality of how interpreted user instructions;
participants stated that they were unprepared for the challenges they faced. Fifth, participants with
more experience in prompting or math spent more time on LEETPROMPT. Sixth, we find that people
uncovered a diverse array of instruction strategies than these automatic baselines. Finally, participants
self-reported a learning effect and better strategy use as they progressed through the study.

Participants found solutions even though the problem setters were not able to solve them. As
shown in Table 1, all problems were solved by at least one participant. The problem setters’ difficulty
categorization is strongly correlated with how many test cases participants passed (r(19) = .74, p =
.01) and what percentage of participants were able to solve all 5 private test cases (r(19) = 0.84, p =
.001). For “Digit Sum”, only one participant was able to solve the question. Surprisingly, the
successful solution involved a specific re-wording of the question that improved the problem’s clarity
and thus made it easier for the model to understand and solve the problem. Only through collection
action is LEETPROMPT able to identify this solution. Similarly, half the participants were able to
solve “Food Chain”. Surprisingly, one winning instruction was a logically incorrect reasoning
step that somehow still passes the test cases (shown in Figure 1). This adds more support to
concurrent work, announced this week, which also finds that unfaithful reasoning steps improve LLM
performance [55].
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Table 2: Comparison of existing prompting approaches to prompts collected from LEETPROMPT. 0s: Zero-shot;
0s CoT: Zero-shot Chain-of-Thought prompting; 1s, 2s, 3s, 4s: 1,2,3,4 shot (or examples) prompting; Auto-CoT:
Automatic Prompting Method; Ours: Prompts from LEETPROMPT. P denotes the maximum number of testcases
that the the given method was able to pass. As Auto-CoT and Ours have multiple prompts per problem, we
report LD & CD which are the lexical and content diversity of prompts for each problem. We do not report AD
for Auto-CoT since it defaults to using CoT as the main strategy for solving the problem.

0s CoT 1s 2s 3s 4s Auto-CoT Ours
Domain Question P P P P P P P LD SD P LD SD

Biology Water Potential 2 2 3 5 5 5 5 0.17 2e-05 5 0.56 3e-02
Biology Food Chain 4 3 3 3 2 3 5 0.25 3e-05 5 0.48 6e-03
Physics Ideal Gas Law 5 3 4 4 4 5 4 0.42 1e-04 5 0.38 7e-02
Physics Resistance is Futile 0 0 3 3 4 2 3 0.42 2e-04 5 0.43 8e-02
Math Consecutive Integers 5 4 5 4 4 5 5 0.34 2e-05 5 0.68 5e-03
Math Digit Sum 3 2 3 3 3 4 5 0.31 2e-05 5 0.46 5e-03
Programming Intersperse 5 5 5 5 5 5 4 0.10 2e-05 5 0.51 8e-03
Programming Sort Numbers 0 0 4 4 3 3 4 0.37 9e-05 5 0.49 2e-03
Knowledge Beatles Title 5 5 4 4 4 5 5 0.11 5e-05 5 0.47 3e-04
Knowledge Theory of Mind 0 0 5 5 5 5 5 0.11 3e-05 5 0.49 4e-04

29 24 39 40 39 42 45 0.26 6e-05 50 0.49 2e-02

Table 3: Pearson’s correlation coefficient between participant attributes (demographic, background, and
experience) and the maximum number of test cases passed and the time taken for each problem. ‘..’ indicates
trending towards significance (p < 0.1) and ‘*’ denotes significance (p < 0.05). Pass is the average number of
testcases passed and Time is the avg. time taken between first and last interaction with the problem.

Domain → Biology Physics Math Programming General Overall
Participant ↓ Pass Time Pass Time Pass Time Pass Time Pass Time Pass Time

Demographic
Age 0.23 -0.23 -0.13 0.20 0.13 0.29 0.36 0.44.. 0.13 0.23 0.21 0.32

Experience
Biology -0.03 -0.11 -0.32 0.03 -0.41.. -0.50* -0.26 0.16 -0.29 -0.09 -0.37 -0.24
Physics 0.12 -0.01 0.18 0.46.. 0.04 0.03 0.21 -0.08 0.31 -0.23 0.25 0.02
Math 0.18 0.25 0.01 0.31 0.10 0.30 0.34 0.41.. 0.25 0.27 0.26 0.54*
Trivia -0.01 0.19 0.08 -0.11 0.25 -0.05 0.45.. 0.34 0.22 0.01 0.30 0.11
LLM 0.09 0.51* 0.14 0.22 0.43.. 0.19 0.36 0.25 0.43.. 0.42.. 0.42.. 0.59*
Prompting 0.43.. 0.13 0.21 0.54* 0.35 0.16 0.35 0.06 0.25 0.35 0.43.. 0.45..
Programming -0.27 0.18 -0.05 -0.38 0.09 -0.22 0.19 0.15 0.25 0.19 0.10 -0.02

None of the automatic mechanisms were able to find instructions to solve all the problems
(Table 2). Furthermore, the diversity metrics (LD and SD) are both significantly smaller. A low LD
implies that these mechanisms do not deviate from the original problem description. We visualize the
lack of diversity of Auto-CoT in Figure 2, which visualizes the first two principal components of the
SD instruction embeddings for each problem.

Lexical diversity of instructions is significantly correlated with the number of passed test cases
(p(19) = 0.71, p < 0.01). (Table ??). This mirrors prior work [30] which found that having diverse
reasoning allowed for better LLM performance. This result suggests that large LLM benchmarks
should rethink the use of a small fixed set of instructions. From Table 2 the best automatic mechanism,
Auto-CoT, has lower LD than LEETPROMPT participants (0.26 vs 0.49) and also passes fewer number
of test cases (45 vs 50) which further proves this point.

Participants struggled when debugging unexpected model behavior. Participants reported a sense
of confusion between their expectations versus how the model worked. Figure 2 shows visually
that there exists entire clusters of instructions that do not solve the problem. For example, math-
related strategies to solve the two math problems didn’t work while programming-related strategies
did. Participants complained that the model “would do math incorrectly” (P42). Similarly, using
domain-specific information, such as using Ohm’s Law to solve the “Resistance is Futile” Physics
question failed while using math-related instructions sometimes succeeded. Even so, one participant
exclaimed, “what was also strange was that the numerical answer the LLM provided could change
based on seemingly trivial additions to the prompt: “I would perturb prompts in small ways that
might unexpectedly change the output” (P37).

Participants with experience with LLMs, or an education in math spent significantly more
time writing instructions (p(19) = 0.59, p < 0.05) and (p(19) = 0.54, p < 0.05). From Table 4,
those with either experience with LLMs or prompting were trending towards significance for solving
more problems (p(19) = 0.42, p < 0.1, p(19) = 0.43, p < 0.1). From Table 4, there is no strong
correlation between the participant’s domain knowledge with solving problems in that domain.
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Taken together, these two findings suggest that knowing how to instruct the model can be more
important than domain knowledge about the problem.

Participants uncovered a variety of instruction strategies to solve problems. Each column in
Figure 2 is a different domain. Interestingly, the clusters appear to follow a similar pattern between
the two rows, implying that people use similar strategies for problems within a given domain.

On average, natural language worked better than pseudocode. By qualitatively analyzing
the clusters in Figure 2), we find that participants who used pseudocode instructions generally
wrote longer instructions to account for all possible edge cases, similar to writing exceptions in
software. Debugging these instructions was easier even though writing the complex instruction took
longer. For those who wrote natural language instructions, their instructions were shorter, and more
successful. The one exception was the Physics domain, for which simplifying the domain-specific
knowledge about physics into arithmetic equations worked the best. Unfortunately, participants with
a background in programming mentioned that they found it difficult to break away from writing
programming instructions, “Was thinking in a programming language/code and found it hard to
translate that to an instruction” (P57) and, “Wasn’t able to express programmatic reasoning” (P42).

Explicit, detailed instructions do better but instruction structure can also affect performance.
Participants learned a need for clarity and to “give more direct and structured commands” (P34) and
be “extremely explicit and instructive” (P48) in order for the model to understand. Others noticed
that relatively trivial changes led to different results in unpredictable ways, such as “‘do not include
any explanation and just provide the answer’ changing the answer” (P48). Related, in “Beatles Title”,
we notice that the approaches did not cluster into easily separable clusters (Figure 2). This is because
the question purely relied on factual knowledge and did not require explicit reasoning. In the absence
of a strategy, we evaluated how minor changes in instructions might result in better performance,
finding that generous use of line breaks between examples resulted in better performance. Our future
work will evaluate the generality of this finding.

Participants demonstrated and self-reported a learning effect as they progressed through the
study. Multiple participants mentioned that they began adopting specific strategies as they completed
more questions. “Yes, as I went through the problems I learned how to ask the model questions so
it could help me answer the question. I also learned how to provide reasoning for the examples.”
(P39) “I realized simplifying the problems greatly increased the reliablility of the model, so I tried to
rephrase questions to be as simple as possible [for future problems]” (P42).

6 Future directions and limitations

In the future, LEETPROMPT could serve purposes beyond evaluation. It could support users produce
tutorials to teach others how to use LLMs; it can serve as a platform for the public to audit released
models; it could also become integrated with existing benchmarks, like HELM, to provide micro-
analysis evaluation of individual inputs; it can also track interaction patterns between people and
LLMs over time. However, it does have its set of limitations: First, the user interactions from our
study are unlikely to be indicative of LEETPROMPT’s usage in the wild with 20 participants with
monetary compensation. Second, the demographics of participants mostly included people who have
STEM knowledge and had at least heard of language models. Third, our problems did not explore
open-ended tasks, creativity tasks, or complex tasks that require tool-usage.
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A Scaling up user study

To see if our results generalize, we expand our user study to include 12 more participants, bringing
us to a total of 32. The trends described in our main paper persist, with additional dimensions now
statistical significant. In addition to the results already described in the main paper, Table 4 shows
that prior language model and prompting experience significantly improve participants’ performance
on our problems across all domains. This new statistic adds further support to a point we made in
our main paper: we noted that users self-reported a learning effect, where they improve their ability
to write instructions as they tackle more problems.

The change in PCA clusters over time between the user study results reported in the main paper and
the scaled-up user study results is depicted in Figure 3. Overall, cluster arrangements are similar
across problems; however, human-generated instructions increasingly span across the first principal
component for most problems, indicating increased diversity in human instructions. A greater number
of instructions also provides a more reliable indication of each strategy’s solvability.

Table 4: Pearson’s correlation coefficient between participant attributes (demographic, background, and
experience) and the maximum number of test cases passed and the time taken for each problem. ‘..’ indicates
trending towards significance (p < 0.1) and ‘*’ denotes significance (p < 0.05). Pass is the average number of
testcases passed and Time is the avg. time taken between first and last interaction with the problem.

Domain → Biology Physics Math Programming General Overall
Participant ↓ Pass Time Pass Time Pass Time Pass Time Pass Time Pass Time

Demographics
Age -0.36* -0.09 -0.57* -0.11 -0.27 -0.04 -0.38* 0.08 -0.16 0.15 -0.44* -0.02

Experience
Biology 0.13 -0.06 -0.04 0.35* 0.02 -0.33.. -0.09 0.18 0.11 0.03 0.03 0.03
Physics -0.26 -0.08 -0.01 0.37* 0.03 -0.10 -0.05 -0.14 0.06 -0.23 -0.05 -0.03
Math -0.03 0.14 0.08 0.28 0.24 0.20 0.18 0.26 0.23 0.06 0.19 0.30..
Trivia -0.01 -0.11 -0.00 0.14 0.37* -0.20 0.30.. 0.24 0.19 -0.12 0.22 -0.06

Experience
LM 0.44* 0.48* 0.22 0.28 0.54* 0.37* 0.49* 0.16 0.55* 0.39* 0.58* 0.60*
Prompting 0.40* 0.34.. 0.20 0.45* 0.38* 0.39* 0.35* 0.00 0.39* 0.33.. 0.44* 0.58*
Programming -0.06 0.23 0.09 0.08 0.26 0.13 0.29 0.14 0.36* 0.09 0.26 0.23

B Participant demographics

Figures 4, 5 and 6 describe the participant demographics and experience as surveyed before the study,
and their feedback after they finished the study.

C Evaluating other models

In this section, we evaluate how the human-generated instructions work across other LLMs. All the
instructions were generated using GPT-4 interactions. Here, we test if those same instructions work
on GPT-3 and GPT-3.5. We also add 10 new internal test cases along with the 5 externally generated
test cases reported in the main paper.

Table 7 shows the performance of the instructions using GPT-3 (text-davinci-003) as the language
model. We also show the results on all test cases (5 external + 10 internal). The instructions submitted
by the study participants passed 143 out of 150 test cases which surpasses all the automatic strategies.
The best performing automatic method, 4-shot, passes only 86 test cases, which accounts for only
58% of the test cases that human instructions succeed on.

Table 6 shows the performance of the instructions using GPT-3.5 as the language model. The
instructions submitted by the study participants passed 148 out of 150 test cases which surpasses
all the baseline prompting strategies by a significant margin. Again, the best performing automatic
method, 4-shot, passes only 94 test cases, which accounts for only 63% of the test cases that human
instructions succeed on.

Finally, table 5 shows the performance of the instructions using GPT-4 as the language model. The
number of test cases passed is higher for all instruction strategies when using GPT-3 and GPT-3.5.
The instructions submitted by the participants pass all 150 test cases, while 4-shot prompting passes
125 test cases which is the highest amongst the 3 models. Therefore, automatic methods using GPT-4
only pass 83% of all the successful human generated instructions.
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Collected instructions with 20 participants (dated May 17th: NeurIPS 2023 paper submission deadline)

Collected instructions with 32 participants (dated May 24th: NeurIPS 2023 supplementary deadline)

Figure 3: Visualizing the space of Auto-CoT and LEETPROMPT Instructions: 2D Principal Component
Analysis (PCA) of embeddings of Auto-CoT and collected instructions from LEETPROMPT. Auto-CoT in-
structions are marked as purple X. LEETPROMPT instructions are marked as dots with colors representing its
solvability: "Test" instructions are colored gray. For "Submitted" instructions, red color indicates that they
failed all testcases, yellow indicates they passed 1-4 testcases, and green indicates that they passed 5 testcases.
Instructions are specifically shown for two problems each from each domains to illustrate the different strategies
used by participants and whether they were successful.

Overall, we can see that despite the model we use, the human-generated instructions consistently
outperform the automatic strategies. Even on less powerful models like GPT-3 and GPT-3.5 the
human instructions pass more than 95% of the test cases, demonstrating the importance of studying
LLM capabilities with human interactions.

D Diversity of problems

We provide (in Table 8) a summary of all 10 problems with the description of each problem and some
example input-output pairs that participants were shown as part of the problem description. Below,
we list the reasons for choosing each of these problems to include in our user study.

Water potential. We chose “Water potential" because it is a very simple problem in biology. We
wanted to mix simple and difficult problems to see how the task’s complexity influenced how users
developed instructions. Most users noticed the greater than/less than relationship with 10, but even if
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Figure 4: Pre-study survey of user study participants indicating their background (age, gender, highest level
of education, industry, type of degree, and their first language), experience with different subjects (biology,
physics, mathematics, and puzzles), and experience with using information technologies relevant to our study
(language models, prompting, and programming)

Figure 5: Post-study survey of user study participants describing their experience with solving problems,
their perception of the platform and feeling of control with language models. Participants also report on whether
they used external resources while solving problems and how they envision using leetprompt platform in the
future.

they didn’t, copying and pasting the problem statement and providing a few examples worked fairly
well.

Food chain. “Food chain" is a more difficult biology problem that the problem setters were unable
to solve. It required much more complex logic that differed depending on the relative position of the
two species in the food chain. Some participants asked the model how to solve it and gave that back
to the model, which worked fairly well, while others gave incorrect logic, which worked in a few
cases despite being factually incorrect.

Ideal gas law. We chose “Ideal gas law" because it is one of the most fundamental equations in
physics. Users didn’t have to do much except apply the equation, which they could easily reduce to a
simple division by 100, as many quickly realized. With this problem, however, a copy-paste strategy
or even leaving out the explanation and asking the model to detect a pattern worked extremely well.

Resistance is futile. “Resistance is futile" necessitated more logic in calculating the total resistance
of the circuit prior to applying Ohm’s Law. Despite the fact that Ohm’s Law is fairly simple,
the equations for calculating total resistance were too complex for the language model, and some
participants found the text description of the circuit difficult to interpret. No one was able to solve this
without simplifying the formula in our first round of user studies, but one participant in the second
round was able to solve it with a vague prompt that did not include a formula and some examples.
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Figure 6: System Usability Scale [4] used for measuring the usability of LEETPROMPT by study participants.

Consecutive integers. “Consecutive integers" is the simpler of the two math problems. It is an
elementary school level problem that the language model easily understands. Users who simplified
the formula were successful, but it was also possible to solve the problem by simply pasting or
rewording the prompt and providing examples.

Digit sum. “Digit sum" is an intriguing problem because it is very simple for a human to solve and
is also considered an elementary school level problem. However, the logic is much more difficult to
explain to the language model because the model isn’t as strong in math and, in many cases, doesn’t
know what a “digit" is. Participants were surprised by the resulting outputs of their test inputs, and
found it difficult to understand why the model produced those results. Even though it was very simple
to solve manually, the problem setting team was unable to solve it using the language model. In this
problem, only two instructions worked; both used a rewording of the question and two examples that
were the same and in the same order, and neither example was an edge case example.

Intersperse. “Intersperse" is a simple programming problem that participants with limited pro-
gramming experience could understand. The problem setting team derived this problem from an open
dataset [8] rather than creating it. Some participants were surprised by the output because it provided
a code to solve the problem rather than the solution, with one participant even adding “Please no
code" to their prompt.

Sort numbers. “Sort numbers" is another relatively simple programming problem, a simple array
sort with English numbers rather than numerals. A version of this problem is also used in the open
dataset [8]. The majority of participants explicitly converted between the text versions of the numbers
and the numerals and created an array, while some successfully sorted the words directly.

Beatles. We selected the “Beatles problem" because it is more concerned with general knowledge
and text processing than with mathematical formulas or programming logic. To identify Beatles
songs, the model needed to recognize them and be able to parse an input string. The model had
trouble recognizing the song “Rain" in one of the example problems, which stumped participants
who were trying to pass every example case before submitting, but because it was not used in the test
cases, those who submitted anyways passed. The language model also counted additional titles that
were semantically similar to phrases in the passage but were not direct substrings.

Housesitting. “Housesitting" is a theory of mind problem. The problem-solving team wanted to
know if the language model could perform well in theory-of-mind tasks. Participants were required to
explain its lengthy description to the model. However, once participants provided all of the scenario
descriptions, the language model was mostly successful in solving the problem. However, because of
time constraints and a general dislike of reading long problem descriptions before being able to solve
the problem, some participants were discouraged from even attempting the problem. The standard
strategy participants employed, which was mostly successful, was to copy and paste the scenario
description and insert some examples.
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Comparison of existing prompting approaches to prompts collected from LEETPROMPT using GPT-4, GPT-3.5-
TURBO and GPT-3 as the language models. 0s: Zero-shot; 0s CoT: Zero-shot Chain-of-Thought prompting; 1s,
2s, 3s, 4s: 1,2,3,4 shot (or examples) prompting; Ours: Prompts from LEETPROMPT. P denotes the maximum
number of testcases that the the given method was able to pass.

Table 5: GPT-4
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 7 7 8 15 15 15 15
Biology Food Chain 9 8 9 6 6 8 15
Physics Ideal Gas Law 12 7 10 12 12 13 15
Physics Resistance is Futile 3 0 3 10 11 10 15
Math Consecutive Integers 14 14 13 14 13 13 15
Math Digit Sum 6 6 9 8 8 9 15
Programming Intersperse 13 13 14 14 14 14 15
Programming Sort Numbers 0 0 13 13 13 14 15
Knowledge Beatles Title 14 14 11 14 14 14 15
Knowledge Theory of Mind 1 0 15 15 14 15 15

79 69 105 121 120 125 150

Table 6: GPT-3.5-TURBO
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 3 9 12 14 14 15 15
Biology Food Chain 0 1 9 6 6 8 15
Physics Ideal Gas Law 0 3 4 10 13 11 15
Physics Resistance is Futile 0 0 0 2 2 2 15
Math Consecutive Integers 10 13 14 11 12 8 15
Math Digit Sum 7 3 5 6 6 5 14
Programming Intersperse 6 2 1 11 11 12 15
Programming Sort Numbers 1 0 11 12 12 13 15
Knowledge Beatles Title 11 10 11 12 12 11 15
Knowledge Theory of Mind 2 1 10 8 7 8 14

43 33 73 88 92 94 148

Table 7: GPT-3
0s CoT 1s 2s 3s 4s Ours

Domain Question P P P P P P P

Biology Water Potential 6 0 8 10 12 14 15
Biology Food Chain 9 8 8 10 9 11 15
Physics Ideal Gas Law 0 0 6 7 8 8 15
Physics Resistance is Futile 0 0 0 3 4 4 15
Math Consecutive Integers 7 7 9 4 4 6 15
Math Digit Sum 4 3 4 3 3 5 12
Programming Intersperse 0 0 4 9 10 10 13
Programming Sort Numbers 0 0 6 5 2 9 15
Knowledge Beatles Title 9 11 10 9 7 8 15
Knowledge Theory of Mind 0 0 9 10 10 10 13

32 38 68 74 71 86 143

E Qualitative coding

To gauge the diversity in responses, we implemented qualitative coding. This method is typically
used in social sciences to categorize and analyze qualitative data - in this case, submissions made in
response to instructions. In this process, we assign codes, or specific labels, to different aspects of the
data in order to classify it in a meaningful way.

Here are the codes that we utilize:

Instruction prompting (INST): This coding category pertains to strategies involving direct instruc-
tions. These are the most common methods employed by participants. This might involve:

• INST-SIM: Simplifying the problem to make it more understandable.

• INST-EXP: Asking the model to emulate a third party, like an expert or a crowd, to generate
a response. [1]
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Table 8: Summary of Problems given in the user study, with an input / output example.
Question Description Example

B
io

lo
gy

Water potential Given the sucrose concentration of an animal cell in a
solution, determine whether it will shrink or expand

INPUT: 11
OUTPUT: expand

Food chain Given a food chain, determine whether an increase in
one given species will lead to an increase or decrease in
the population of a second species.

INPUT: kelp -> sea urchin ->
otter -> orca, otter, kelp
OUTPUT: increase

Ph
ys

ic
s Ideal gas law Deriving final pressure with constant volume using the

ideal gas law PV = NRT
INPUT: 400
OUTPUT: 4

Resistance is futile Determining current for an electrical circuit given a volt-
age and resistance.

INPUT: 100
OUTPUT: 75

M
at

h

Consecutive integers Given a sum of three consecutive integers, find the small-
est integer.

INPUT: 63
OUTPUT: 20

Digit sum Given two input numbers, output the smallest number
with the given number of digits and given digit sum.

INPUT: 4, 9
OUTPUT: 1008

Pr
og

ra
m

m
in

g Intersperse Insert a number ’delimeter’ between every two consecu-
tive elements of input list ‘numbers’

INPUT: [1, 2, 3], 4
OUTPUT: [1, 4, 2, 4, 3]

Sort numbers Given an input of space-delimited string of numberals
from ’zero’ to ’nine’, sort them from smallest to largest

INPUT: ‘three one five’
OUTPUT: ‘one three five’

G
en

er
al

K
no

w
le

dg
e

Beatles Given a funny phrase, how many Beatles song titles are
in it?

INPUT: Yesterday I toured a
yellow submarine.
OUTPUT: 2

Housesitting Theory-of-mind: Bob has to go on a trip for his job. He
has to leave his house - and his dog - for a week while
he’s on the trip. He is having his friend Anna take care
of the house and the dog, Fido, while he’s away.... Anna
completes the given action. When Bob comes back, where
will he look for the given item? Will he find it?

INPUT: Anna takes out Fido’s
treat bag to feed him after he
sits on command. She leaves the
bag on the counter. Bob comes
back and Fido welcomes him like
a very good boy! Bob wants to
feed him a treat.
OUTPUT: G, no

• INST-INC: Includes instructions that may not be factually correct but can still assist the
language model in problem-solving. [55]

Examples (EX): This category involves providing examples, which have been observed to enhance
the model’s problem-solving capacity.

• EX-ZERO: No examples are provided, leaving the model to interpret potential inputs and
outputs. [26]

• EX-N-SHOT: Few examples are given, providing some clues to the model.

• ORDER: The solution utilized an unusual sequence in which examples are presented. [62]

Chain of thought (COT): Encouraging the model to break down the explanation into steps or
providing step-by-step problem-solving instructions can enhance the model’s performance.

• COT-CONS: Changing the decoding strategy to promote diverse sampling with self-
consistency. [63]

• COT-COMP: Using complex reasoning steps to assist the model. [15]

• COT-TEXT: Indicates that a chain of thought approach doesn’t substantially help with text-
based problems. [66]

Structure (ST) The way the prompt text is formatted can influence the model’s performance.
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• ST-NONE: Continuously formatted instructions without line breaks. These appeared to be
less effective.

• ST-BREAK: Breaking the prompt into multiple lines. The most commonly employed format-
ting strategy.

• ST-STEP: Structuring the prompt with steps or bullet points. This was shown to enhance
prompt clarity.

• ST-QUES: Using "Q:" instead of "Question:". We observed this to be effective in certain
cases. [15]

Writing code (CODE): Writing code (CODE): This category pertains to responses involving cod-
ing. [69]

• CODE-PSEU: Writing solutions in pseudocode format.
• CODE-PROG: Writing actual functions in a programming language or asking the model to

generate code.

Asking the model for help (SELF): In some instances, even if the model doesn’t have a final
solution, it can still provide helpful input as an intermediate step toward helping the user create a
solution.

• SELF-ASK: Repeatedly asking the model for help can yield beneficial results. [41] (SELF-
ASK)

• SELF-TAUG: When prompted with a few rationale examples as a self-taught-reasoner, the
model generates rationales to answer many questions. [68]

Strategies for future studies We found more strategies that we didn’t code for in our responses,
but we expect to appear in future studies with the platform.

• Social engineering the model such as giving it confidence or threatening it [13]. We did not
see any of our participants do this, but they may attempt in future studies, as more awareness
of this technique percolates to the public.

• Generate programs as the intermediate reasoning steps, but offloads the solution step to a
runtime such as a Python interpreter [18]. We did not have any integrations with any code
interpreters, but if we were to build such a feature into LEETPROMPT this would be useful
coding.

• ‘Program of Thoughts’ (PoT) uses language models to express the reasoning process as
a program and executes the code on an external computer. [9]. We did not have any
integrations that run code, but if we were to build this feature into LEETPROMPT, this would
be a useful coding.

F Diversity of instructions

In this section, we visualize some example human-generated instructions from our user study,
how many test cases the instruction passed, and how we codified the instruction strategy with an
explanation for our code. The following are a few sample instructions submitted for the problem
“Resistance is Futile":

Human-generated instruction:
Find the value of 7500 / [[ INPUT ]].
Give your answer in the form "Output: "

Number of test cases passed: 5/5

Explanation: This solution presents a direct instruction approach, incorporating a simplified formula
without providing any examples. Given its simplicity, there’s no break line, list or question/answer
structuring within the prompt itself.
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Coding: INST-SIM, EX-ZERO, ST-NONE

Human-generated instruction:

For the following resistance, output the total current of the circuit
Input: 100
Output: 75
Input: 250
Output: 30
Input: 300
Output: 25
Input: [[ INPUT ]]

Number of test cases passed: 5/5

Explanation: This solution uses direct instruction, void of any simplified formulas. It reconstructs
the question into a more straightforward form, stripping away details that might seem essential to a
human, such as the configuration of the resistors or the battery’s voltage. Nonetheless, the model
manages to infer an answer from the three examples provided, which are separated by new lines.
Interestingly, the sequence of these examples deviates from the original list.

Coding: INST, EX-3-SHOT, ST-BREAK, ORDER

Human-generated instruction:

Here is a electrical circuit question I am trying to solve:
What is the total current in milliamperes of the circuit?

Based on ohm’s law, current is voltage devide by resistance,
the circuit has a voltage source of 9 volts, I will provide a number,
the resistance of whole circuit will be 1.2 times the number I provided,
can you calcuate the current for me?

The following are some example inputs and outputs:
Input: 100
Output: 75
Input: 300
Output: 25
Input: 750
Output: 10

Please note that the output of the current is milliampere, just output
a number without unit

Input: [[ INPUT ]]

Number of test cases passed: 5/5

Explanation: This solution employs a ’chain of thought’ strategy, as it involves the participant
explaining the calculation process for the current using a somewhat simplified formula. It also
demonstrates the participant’s effort to correct the model’s behavior by explicitly stating that the
output should be in milliamperes at the conclusion of the prompt.

Coding: INST, COT, EX-3-SHOT

Human-generated instruction:
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Tell language model how to solve the problem here
You are building a device to resist the Borg. In order to do this, you
need to connect some resistors in a circuit with a 9 V battery. You have
5 resistors of a given resistance (in ohms). You plan to connect 3 of
them in series in parallel with two of them in series. For the three
resistors in series, we simply add their resistances:
Rseries = R1 + R2 + R3. For the two resistors in series, we add their
resistances: Rparallel = R4 + R5. Then we can calculate the equivalent
resistance of the two sets of resistors in parallel: 1/Rparallel =
1/Rseries + 1/Rparallel.Finally, we can use Ohm’s Law to calculate the
total current in the circuit: I = V/Rtotal. What is the total current in
milliamperes of the circuit?

Input: 100
Output: 75
Input: 300
Output: 25
Input: 750
Output: 10
Input: 250
Output: 30
Input: [[ INPUT ]]

Number of test cases passed: 4/5

Explanation: In this submission, the participant restates the problem statement while incorporating
additional instructions and logical steps needed to calculate the current, a strategy characteristic of a
’chain of thought’ prompt. The participant also provides four example cases, adhering to the order in
which they were presented on the platform.

Coding: INST, COT, EX-4-SHOT, ST-BREAK

Human-generated instruction:
def total_current(resistance, battery_voltage):

# Calculate the total resistance of the circuit
series_resistance = 3 * resistance
parallel_resistance = resistance + resistance
total_resistance = series_resistance + (1 / parallel_resistance)

# Calculate the total current in milliamperes using Ohm’s law
total_current = battery_voltage / total_resistance
total_current_milliamps = total_current * 1000

return total_current_milliamps

# Example usage
resistance = 100 # ohms
battery_voltage = 9 # volts
total_current_milliamps = total_current(resistance, battery_voltage)
print(""The total current in milliamperes is:"", total_current_milliamps)

Input: Any number
Output: total_current_milliamps
Input: [[ INPUT ]]

Number of test cases passed: 0/5

Explanation: This submission used Python code to create a solution that calculated the total current
in milliamperes of the circuit. This required a detailed explanation of the current calculation method,
which suggests the use of a ’chain of thought’ prompt strategy. However, the method used was

22



incorrect. Direct instructions were also a feature of this approach, as they guided the model to print a
specific statement. Interestingly, this participant did not provide any example input-output pairs. The
structure of the solution was enhanced by placing instructions on separate lines.

Coding: INST-INC, COT, CODE-PROG, EX-ZERO, ST-BREAK

Human-generated instruction:
You are an expert electrictian.
I give you 5 resistors all of the same resistance as input. In your
circuit is a 9 V battery.
You have connected 3 resistors in series, which is in parallel with
2 other resistors that are in series. What is the total current in
milliamperes of the circuit?

Examples:
Input: 100
Output: 75

Input: 300
Output: 25

Now it’s your turn:
Input: [[ INPUT ]]

Number of test cases passed: 3/5

Explanation: This participant has asked the model to simulate an expert electrician when giving
instructions. They have also provided two examples which are separated by new lines.

Coding: INST-EXP, EX-2-SHOT, ST-BREAK

Participants demonstrated a diverse range of strategies in attempting to solve the problem, illustrating
the rich array of thought processes that emerges when different individuals tackle the same challenge.
However, the effectiveness of these strategies varied. Writing code and instructing the model to
impersonate an expert was less successful for this problem. Alternatively, strategies that simplified
the problem were more effective. This was seen in both the transformation of the problem into a
straightforward formula, and the removal of seemingly crucial problem parameters. It turns out that,
in many cases, these elements were important from a human perspective but not necessary for the
language model to infer a solution. In conclusion, strategies that focused on distilling the problem to
its core components were typically more successful.

G User interface design

The platform underwent multiple iterations to improve user experience and testing.

Initial design. Overall, the initial UI lacked clarity in presenting primary actions and information.
We brought in UI/UX engineers onto our team to improve the design. With them, we identified
several areas for improvement. We describe these improvements in Figure 7

Design iterations. Our team iterated through different versions in order to address the areas
identified above. In Figures 8, 9, you can see two different designs with features used in the final user
study design.

Final UI design. The final user study incorporated elements from previous iterations (see Fig-
ures 11, 12, 13). To improve usability, we included a tour of the interface (Figure 10), a problem
navigation pane(Figure 11), and a test feedback UI change (Figure 14).
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Figure 7: Initial design details. (A) The area containing "Details," "My Submissions," and "Standings" was
located underneath problem description. If the problem description is too long, user may not see this information.
(B) "Mask" represented the input that users could manipulate in order to test instructions, but the term was
confusing to many users. (C) Unclear that user can switch to different models or change parameters. Icons do
not clearly indicate what types of parameters can be changed. (D) Buttons to test and submit instructions were
located under respective tabs. Users found this frustrating as testing and submission required an extra click into
the tab before clicking on respective button.

Figure 8: Iteration 1. (A) Problem description, details, user submissions, and user ranking were consolidated
into one portion so users can easily scan for information available to them. The information previously found
under "Details" was placed next to the problem name. "Details" in this iteration shows the problem description
and examples. (B) The word "MASK" is replaced with the word "INPUT" so users understand that this text is to
include their manipulated input. (C) Adjustment for models and parameters made more visible. (D) Test and
submit buttons are visible.
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Figure 9: Iteration 2. In this second iteration, we explored to idea of (E) consolidating inputs and outputs into
one area. Inputs would be highlighted based on the test case selected. And outputs would be highlighted in color.
(F) Console expands and collapses so users have maximum area to work on instructions.

Figure 10: Example problem and tour of the interface. Before starting the user study, participants are given
an example problem. A walk-through with tooltips introduces each section of the interface.

25



Figure 11: User study interface. For the user study, we adapted the interface to provide additional information
to the study participants. For this, we made the following changes as marked: (A) Modal overlay provides
problem navigation and shows time remaining in the study. The button "Study Pane" leads to a study dashboard
side sheet (A.1) where participants can navigate to other problems and see the status of each ("Fully Solved,"
"Partially Solved," "Unsolved," and "Not Attempted). (B) Explicitly stating the name of this section. (C) & (D)
Clarification of relationship between input and test cases. (E) Model and parameters adjustments are visible but
frozen for the purposes of this study. This is explained in the initial walk-through.
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Figure 12: Testing functionality. The participants can test their instructions with their own custom inputs in
the test console. The specific functionalities are as follows: (F) Participant’s text input was divided into three
sections. The top screen allows editing for instructions. Bottom section shows area to enter and edit input. Area
that shows output of model is below. Participant can either click on "Run on Custom Input" or the "Test" button
to test instructions on a particular input.

Figure 13: Submit functionality. After the participants are done testing their instructions, they can submit
their prompt for evaluation against the blind testcases. When the "Submit" button is clicked, participants are
taken to the submit tab. (G) Loading animation was added to indicate progress. (H) Stop button added for better
user control.
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Figure 14: Submission feedback Once a submission is completed, participants receive feedback on how their
instructions performed against the blind test cases. The feedback is shown to the participants in form of the
shown the number of test cases that passed (see I). Instructions are highlighted based on number of test cases
passed. Green indicates that all test cases passed, yellow for some test cases passed, and red for no test cases
passed.
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